
Exploiting RISC-V Hint Instructions for
Lightweight VLIW Execution

Leo Marek1*, Gregory Chekler1*, Jing Jing Chen1*, Elliot Chae1*,
Ethan Carr1* and Ray Simar1

1Department of Electrical and Computer Engineering, Rice University, Houston, USA
Email: {lnm7, gsc8, jc165, ejc12, ehc6, ray.simar}@rice.edu

*Equal Contribution

Abstract—The pursuit of high Instruction-Level Parallelism
(ILP) at lower power has renewed interest in Very Long In-
struction Word (VLIW) architectures. Yet, conventional VLIW
designs often face challenges such as code density and lack
of binary compatibility. This paper introduces a novel hint-
based VLIW implementation built on the RISC-V Instruction Set
Architecture (ISA). Our proposal utilizes architecturally reserved
HINT instructions to encode static scheduling decisions, enabling
parallel execution without the need for complex hazard detection
hardware.

We evaluated our architectural extensions using the Google
MPACT simulator and implemented them at the Register Trans-
fer Level (RTL) by modifying the OpenHW Group CVW (Wally)
core. The design was verified using Questa and Verilator and is
being synthesized and deployed on an FPGA platform. Perfor-
mance of the design was assessed using a suite of handwritten
DSP benchmarks—specifically FFT, IIR, FIR, and Dot Product
kernels—representing a subset of the Embench DSP test suite.
Results show that this approach delivers substantial speedup on
DSP workloads while preserving full binary cross compatibility
meaning libraries can be written for STARBUG and flexibly
linked directly with other open ended code.

I. INTRODUCTION

Modern embedded processors face a difficult trade-off
between performance and energy efficiency. Superscalar ar-
chitectures extract high Instruction-Level Parallelism (ILP)
through dynamic hardware scheduling, but the required spec-
ulation, dependency checking, and hazard detection introduce
substantial area and power overheads. In this work, we propose
a hybrid approach that leverages the RISC-V ”HINT” instruc-
tions. These instructions are interpreted as NOPs on unmodi-
fied RISC-V cores but can carry explicit dependency informa-
tion for our modified microarchitecture, enabling VLIW-style
parallel issue without incurring the complexity of traditional
dynamic scheduling.

II. METHODOLOGY

Our design methodology progressed from high-level ISA
modeling to hardware realization on FPGA.

A. ISA Validation

We began by modeling the proposed HINT-based extensions
using Google’s MPACT simulator. This allowed us to validate
the decoding logic and bundle formation strategy before com-
mitting to RTL.

B. RTL Implementation

For the hardware implementation, we utilized the OpenHW
Group CVW (Wally) core as our baseline. We modified the
fetch and decode stages of Wally to recognize the scheduled
bundles. We implemented a 12 output 4 input register file to
enable 4 integer datapaths and thus 4 wide VLIW bundles.

C. Verification and Emulation

The modified RTL was simulated using both Questa and
Verilator to ensure functional correctness. Following simula-
tion, the design is being synthesized and deployed on FPGA.

III. EVALUATION

To assess the efficacy of the proposed architecture, we
focused on Digital Signal Processing (DSP) workloads which
traditionally benefit from VLIW execution and are typically
found in embedded applications. We utilized a set of hand-
written assembly benchmarks optimized for our hint-based
scheduler. We compared these to standard RISC-V perfor-
mance with GCC compilation. These benchmarks represent
a critical subset of the Embench DSP test suite, specifically:

• Fast Fourier Transform (FFT)
• Infinite Impulse Response (IIR) Filters
• Finite Impulse Response (FIR) Filters
• Dot Product Operations

A. Results

Preliminary simulator measurements indicate successful
parallel issue of the DSP kernels, resulting in reduced cycle
counts compared to the baseline scalar Wally core and speedup
ranging from 1.5-4x.

IV. CONCLUSION

STARBUG is a unique method to bring VLIW efficiency to
the RISC-V ecosystem. We have established a robust flow for
exploring hint-based parallelism that allows for extensibility
and compatibility with the RISC-V ecosystem.



ACKNOWLEDGMENT

The authors would like to acknowledge David Harris and
the OpenHW Group for the open-source CVW core and
Tor Jerammiasen and other contributors to Google MPACT
simulator.

REFERENCES

[1] A. Waterman and K. Asanović, The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Version 2.2, May 2017.

[2] D. Harris et al., The RISC-V Wally Processor, OpenHW Group.


